Studies in Numerical Stability of Explicit Contact-impact Algorithm to the Finite Element Solution of Wave Propagation Problems
نویسندگان
چکیده
In dynamic transient analysis, recent comprehensive studies have shown that using mass penalty together with standard stiffness penalty, the so-called bipenalty technique, preserves the critical time step in conditionally stable time integration schemes. In this paper, the bipenalty approach is applied in the explicit contact-impact algorithm based on the pre-discretization penalty formulation. The attention is focused on the stability of this algorithm. Specifically, the upper estimation of the stable Courant number on the stiffness and mass penalty is derived based on the simple dynamic system with two degrees-of-freedom. The results are verified by means of the dynamic Signorini problem, which is represented by the motion of a bar that comes into contact with a rigid obstacle.
منابع مشابه
Explicit Difference Schemes for Wave Propagation and Impact Problems
Explicit finite difference and finite element schemes are constructed to solve wave propagation, shock, and impact problems. The schemes rely on exponential functions and the solution of linearised Rlemann problems in order to reduce the effects of numerical dispersion and diffusion. The relationship of the new schemes to existing explicit schemes is analysed and numerical results and compariso...
متن کاملکاربرد روش معادله سهموی در تحلیل مسائل انتشار امواج داخل ساختمان
With the rapid growth of indoor wireless communication systems, the need to accurately model radio wave propagation inside the building environments has increased. Many site-specific methods have been proposed for modeling indoor radio channels. Among these methods, the ray tracing algorithm and the finite-difference time domain (FDTD) method are the most popular ones. The ray tracing approach ...
متن کاملExplicit Stiffness of Tapered and Monosymmetric i Beam-Columns
A formulation for finite element analysis of tapered and monosymmetric I shaped beam-columns is presented. This is a general way to analyze these types of complex elements. Based upon the formulation, member stiffness matrix is obtained explicitly. The element considered has seven nodal degrees of freedom. In addition, the related stability matrix is found. Numerical studies of the aforementio...
متن کاملAxisymmetric Scaled Boundary Finite Element Formulation for Wave Propagation in Unbounded Layered Media
Wave propagation in unbounded layered media with a new formulation of Axisymmetric Scaled Boundary Finite Element Method (AXI-SBFEM) is derived. Dividing the general three-dimensional unbounded domain into a number of independent two-dimensional ones, the problem could be solved by a significant reduction in required storage and computational time. The equations of the corresponding Axisymmetri...
متن کاملNumerical studies of non-local hyperbolic partial differential equations using collocation methods
The non-local hyperbolic partial differential equations have many applications in sciences and engineering. A collocation finite element approach based on exponential cubic B-spline and quintic B-spline are presented for the numerical solution of the wave equation subject to nonlocal boundary condition. Von Neumann stability analysis is used to analyze the proposed methods. The efficiency, accu...
متن کامل